
Executive

INHERITS FROM Object

REQUIRES HEADER FILES Executive.h

DEFINED IN

CLASS DESCRIPTION

Executive allows the execution of shell commands from a program, 
providing
 both synchronous and asynchronous execution of commands.    
Other features
 include the ability to direct command output to another object 
through the
 popen(3) mechanism and displaying of errors through a standard 
panel for
consistency in error reporting throughout an application.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Executive id target; 
SEL action;
double period;
int curCmdId;
int numExecuting;
mutex_t runningLock;
mutex_t doneLock;
id running;
id done;

 
target The target of asynchronous operations 

action Action to be sent to the target when an 
asynchronous
operation ends 

period Period at which the timed entry gets called

curCmdId Used internally for tracking command 
identifiers 

numExecuting Used internally to track the number of 
asynchronous
commands executing

runningLock Mutual exclusion for the running queue 



doneLock Mutual exclusion for the done queue 

running Queue of commands running 
asynchronously 

done Queue of asynchronous commands that 
have finished 

METHOD TYPES

Creating and freeing instances - free 
+ new
+ newPeriod:

Target and Action - setTarget:
- target

Setting timed entry period - setPeriod:
- period 

Executing commands - execute: 
- execute:async:
- execute:async:environs:

Reading pipes - pipe:to:: 
- pipe:environs:to::

Showing errors - showError:
- showError:while:
- showError:while:on:
- showError:while:on:using:

CLASS METHODS

new
+ new
Creates a new Executive object with the default period for updating 
the timed entry.    

See also:    newPeriod:

newPeriod
+ newPeriod:(double)period
Creates a new Executive object with period for updating the timed 
entry.    

INSTANCE METHODS

target
- target
Returns the target of the Executive

See also:    setTarget:



setTarget:
- setTarget:anObject
Sets the Executive's target to be anObject.

See also:    target

action
- (SEL)action
Returns the action that is sent to the target when an asynchronous 
command completes.

See also:    setAction:

setAction
- setAction:(SEL)aSelector
Sets the action that is sent to the target when an asynchronous 
command completes..

See also:    action

period
- (double)period
Returns the period at which the timed entry executes when looking 
for completed commands.

See also:    setPeriod:

setPeriod
- setPeriod:(double)p
Sets the period at which the timed entry executes when looking for 
completed commands.

See also:    period

execute
- (int)execute:(const char *)command
Begins execution of command synchronously.    Returns the result of
the system(3) call.

See also:    execute:async:, execute:environs:async:

execute:async:
- (int)execute:(const char *)command async:(BOOL)async
Begins execution of command.    If asnyc is YES then the method 
returns immediately with the command identifier (a unique integer) 
that can be used when the command eventually notifies the caller 
that it has been completed.    If async is NO then it returns the result
of the system(3) call.



See also:    execute:, execute:environs:async:

execute:environs:async:
- (int)execute:(const char *)command environs:(const char 
*)environs

async:(BOOL)async
Begins execution of command.    If async is YES then the method 
returns immediately with the command identifier (a unique integer) 
that can be used when the command eventually notifies the caller 
that it has been completed.    If async is NO then it returns the result
of the system(3) call.    The environs argument contains command-
line style environment variable definitions that are prepended to 
the command line before execution.

See also:    execute:, execute:async:

pipe:to::
- (int)pipe:(const char *)command to:anObject :(SEL)aSelector

async:(BOOL)async
Opens a pipe to the command command and sends the output lines
to anObject with the selector aSelector.    aSelector should be a 
method that takes one argument, the line that is bring processed.    
See below under pipe:environs:to::async: for the semantics of an
asynchronous request.

See also:    pipe:environs:to::async:

pipe:environs:to::async:
- (int)pipe:(const char *)command environs:(const char *)environs
to:anObject :(SEL)aSelector async:(BOOL)async
Opens a pipe to the command command and sends the output lines
to anObject with the selector aSelector. For synchronous 
commands, aSelector should be a method that takes one argument,
the line that is being processed.    For asynchronous commands, 
aSelector should be a method that takes two arguments, the 
command identifier that is returned by this method and the line 
that is being processed.    The environs argument contains 
command-line style environment variable definitions that are 
prepended to the command line before execution.    If 
pipe:environs:to::async: is called to operate asynchronously, the
target of the Executive will be notified in the same manner as with 
execute:environs:async:.

See also:    pipe:to::async:

showError
- showError:(int)err
- showError:(int)err while:(const char *)doingWhat
- showError:(int)err while:(const char *)doingWhat on:(const char
*)fname
- showError:(int)err while:(const char *)doingWhat on:(const char
*)fname



using:(const char *)prog
Allows the application to have a regular set of error-reporting 
abilities in various degrees of granularity.    The area in the upper 
portion of the NXRunAlertPanel panel will be the text (by named 
parameter) "prog error" The lower part will have the text "Error 
while doingWhat fname (error code err)"

All of the methods eventually call showError:while:on:using:.    If 
any of the more general methods are called, they substitute 
defaults for the missing parameters.

The defaults for these methods are:
doingWhat defaults to "executing a command"
fname defaults to "on a file"
prog defaults to "File"

 


